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Abstract

The lift and drag coefficients of a circular cylinder, translating and spinning at a supercritical rate is studied

theoretically to explain the experimentally observed violation of maximum mean lift coefficient principle, that was

proposed heuristically by Prandtl on the basis of inviscid flow model. It is also noted experimentally that flow past a

rotating and translating cylinder experiences temporal instability—a fact not corroborated by any theoretical studies so

far. In the present paper we report very accurate solution of Navier–Stokes equation that displays the above-mentioned

instability and the violation of the maximum limit. The calculated lift coefficient exceeds the limit of 4p; instantaneously
as well as in time-averaged sense. The main purpose of the present paper is to explain the observed temporal instability

sequence in terms of a new theory of instability based on full Navier–Stokes equation that does not require making any

assumption about the flow field, unlike other stability theories.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The two-dimensional flow field generated by an infinitely long circular cylinder of diameter D translating with an

uniform velocity UN at right angles to its axis and rotating about this axis with angular velocity O� has been studied by
various researchers for a long time. The two important parameters of these studies are the Reynolds number given by,

Re ¼ UND=n with n as the coefficient of kinematic viscosity and the ratio of the peripheral to translational speed,
O ¼ O�D=ð2UNÞ of the circular cylinder.
The fact that a projectile spinning about its axis of travel experiences a transverse force (lift) was originally reported

by Robins (1761) and later by Magnus (1853). The former work is not well known although an interesting account of

this is provided in Anderson (1997). The complex flow field generated by this seemingly simple geometry has served as a

test case to understand the lift generation mechanism and unsteady separation in innumerable studies including in Reid

(1924), Prandtl (1926), Thom (1931), Tokumaru and Dimotakis (1993) and Diaz et al. (1983).

For potential flow, the lift experienced by an airfoil is modelled by fixing the rear stagnation point at the trailing edge

where the physical body has a sharp change in curvature. For bodies with rounded trailing edges, this model cannot be

used. However, Prandtl (1926) argued that for a rotating cylinder the maximum circulation that can be created

corresponds to a situation when the rear and front stagnation points join at the bottom of the cylinder constituting a

half-saddle point. For potential flow this produces a CLmax ¼ 4p corresponding to O ¼ 2 (critical rotation rate). In this

model of potential flow any further increase of O will not cause further increase of CL: This is due to the fact that the

ARTICLE IN PRESS

$An earlier version of this paper was submitted to this journal on 31 August 1998.

*Corresponding author.

E-mail address: tksen@iitk.ac.in (T.K. Sengupta).

0889-9746/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0889-9746(03)00052-5



half-saddle point transforms into a full saddle point inside the flow domain when O is increased further and the flow

inside the closed recirculating zone cannot shed any circulation outside the streamline containing the full saddle point.

This heuristic argument put forth by Prandtl (1926), by using an inviscid flow model, for the maximum lift of a real

flow has been found wanting by Tokumaru and Dimotakis (1993), who reported experimentally measured maximum

lift exceeding by 20% for O ¼ 10 and Re ¼ 3800: The authors considered diffusion, unsteady flow processes and three-
dimensional end-effects as likely causes for this supposed violation. In a similar experiment, Werle (1984) has also

reported observing, at high supercritical rotation rate for Re ¼ 3300; a layer of rotating fluid next to the surface of the
cylinder which subsequently suffered more or less periodic instabilities.

The above experimental observations indicate that unsteady full Navier–Stokes equation needs to be solved. Some of

the recent works in this area, among many others, are due to Badr et al. (1990), Chew et al. (1995) and Nair et al. (1998).

Furthermore, it is also necessary that the numerical procedure for such simulations must be accurate to capture the

experimentally observed instabilities reported in Werle (1984). Some preliminary computations showing the presence of

instabilities have been reported in Sengupta et al. (1999) for a range of Reynolds numbers and rotational rates. The

primary aim of this research is to explain the origin of this instability.

Quite a number of other experimental efforts have been reported in the literature on flow past rotating circular

cylinders, some of which have already been discussed. Apart from McLaughlin et al. (1991), Chew (1987) has measured

the pressure distributions around a rotating cylinder directly by using a single pressure transducer.

Note that the results presented in Chew et al. (1995) for the lift do not match qualitatively with the results reported in

Tokumaru and Dimotakis (1993) for high rotation rates. While the reason was attributed to three dimensionality of the

flow, some remarks are in order about the hybrid vortex method used by them. The hybrid vortex method is a

combination of the diffusion vortex method and the vortex-in-cell method. While the former deals with the full viscous

equation in stream-function-vorticity formulation close to the body, the later is an inviscid method due to Christiansen

(1973), applied in the exterior part of the domain. In the diffusion vortex method the governing equations are advanced

in time by splitting the process of convection and diffusion independently. Additionally, the vortices that are generated,

diffused and convected are redistributed to the fixed mesh points. According to Chew et al. (1995) this process itself can

give rise to large numerical diffusion. It is well known that the redistribution is necessary to control the integration

errors associated with ever-increasing population of discrete vortices which otherwise lead to a chaotic solution (see

Sarpkaya 1989, 1994). As has been described very lucidly by Sarpkaya (1989), this type of techniques ‘‘can slow down

the effects of the discrete form of the Helmholtz instabilityybut do not make the vortex-sheet methods convergent.

Furthermore, they introduce some diffusion of vorticity, either along or away from the sheet and hence errors into the

calculations at all wavelengths’’. Similarly the vortex-in-cell method also can contribute to pseudo-viscosity, according

to Chew et al. (1995).

Another cause for disagreement with experimental results may also be due to the way the surface pressure is usually

calculated for two-dimensional flows. A very clear account for this is given in Pan and Chew (2002), where the authors

identify the problem with the numerical procedure of differentiation of vorticity, when the surface pressure is calculated

from the vorticity derivative by a simple quadrature. Two other methods for calculating the surface pressure are also

discussed in Pan and Chew (2002). One requires estimation of surface pressure from the pressure–velocity formulation

of Navier–Stokes equation and the other from the solution of pressure Poisson equation. Roache (1976) has also noted

that the evaluation of pressure by the first method gives ‘‘different answers when different paths are used to get to the

same point. The discrepancy will be partly due to solution errors for c: But even if the exact solution values for c were
known at all mesh points, different paths of integration would yield different answers due to quadrature errors. Further,

note that velocity gradients are integratedyrequiring double differentiation of the numerically obtained stream

function, which is usually inaccuratey. A more accurate solution can be determined from the Poisson form of the

pressure equation’’. In the present work we have solved the governing Poisson equation for pressure. Since this Poisson

equation has to be solved along with a Neumann boundary condition, the solution times are large compared to the

stream-function equation that is solved along with a Dirichlet boundary condition. This procedure of solving the

pressure Poisson equation was followed in Nair et al. (1998) and Sengupta et al. (1999).

In the next section, a brief description of the governing equations that are solved and the auxiliary conditions are

described, along with the numerical method. In Section 3, results and their detailed explanation are provided.

2. Governing equation and boundary conditions

The details of the governing equations and auxiliary conditions are described in Nair et al. (1998) and Nair and

Sengupta (1997). They are not repeated here, and only a brief description follows.
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Two-dimensional Navier–Stokes equations are solved here in a stream-function and vorticity formulation. The

nondimensional form of these equations are given by

r2c ¼ �o ð1Þ

and

@o
@t

þr � ðoVÞ ¼
1

Re
r2o; ð2Þ

where o is the out-of-plane component of vorticity defined by o ¼ ðr	 VÞ � #k and the velocity is related to the stream
function by V ¼ r	 c; where c ¼ ð0; 0;cÞ: The flow is computed in the transformed ðx; ZÞ-plane, where

x ¼ rðZÞcos 2px and y ¼ rðZÞsin 2px; ð3Þ

in which 0px; Zp1; and
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where r0 indicates the radius of the cylinder, Dr0 is the spacing of the first radial line and d is the increment of the

successive grid line spacing. This type of grid removes alteration of convection and lowest order numerical dissipation,

as discussed in Nair et al. (1998).

The governing Poisson equation for total pressure (pt) is obtained by taking the divergence of the Navier–Stokes

equation in primitive variables. For an orthogonal curvilinear coordinate system this is given as
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where h1 and h2 are the scale factors given by h1 ¼ ðx2x þ y2xÞ
1=2 and h2 ¼ ðx2Z þ y2ZÞ

1=2:
For the boundary conditions on the cylinder wall, the no-slip condition is given by

@c
@Z

� �
body

¼ h2r0O ð6Þ

and

c ¼ constant; ð7Þ

The conditions given by Eqs. (6) and (7) are used in calculating the wall vorticity, condition (7) is used only in solving

the stream-function Eq. (1). The additional periodic boundary condition is applied at the cut (see definition Fig. 1),
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Fig. 1. Schematic of flow around a translating and spinning circular cylinder. Note the reference for measuring y:
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while at the outer boundary, uniform flow conditions are applied. The corresponding far field boundary condition is

@o
@Z

¼ 0: ð8Þ

For the pressure Poisson equation, Eq. (5), a Neumann boundary condition, as obtained from the normal (Z)
momentum equation is used on the surface and outer boundary, whereas a periodic boundary condition is applied at

the cut (Fig. 1). The steady-state inviscid solution is taken to be the initial condition for the impulsively started cylinder

problem.

In the present work, in order to specifically observe the effects of initial unsteadiness and diffusion, we have

computed the cases for Re ¼ 3800 at O ¼ 5 for two different start-up conditions:

(i) the case of pure impulsively started rotation and translation;

(ii) the alternative case, where the translation to final free stream speed is established by a smooth, but, nonuniform

acceleration. The rotation is once again established impulsively. The nonuniform acceleration gives rise to the free-

stream speed variation given by a tangent hyperbolic function

UNðtÞ ¼ %UN tanh
t

t

� �
: ð9Þ

For this case the value of t used is 0.6 (nondimensional convection time scale) and during the initial time up to
t ¼ 0:20 the acceleration is uniform.
For the pure impulsive start, it is well known that the initial wall vorticity has a square-root singularity. The

analytical solution has been given in Badr and Dennis (1985) and Chew et al. (1995) that was obtained by formal

perturbation series expansion. An analytical expression for the vorticity at early times can be obtained for the uniform

acceleration case, and that shows that there are no such singularities of vorticity. Also, it can be shown that the initial

acceleration will have an effect only if it persists beyond the time at which the first separation bubble is formed for any

two-dimensional body held stationary in a uniform flow. Thus, the numerical results will be identical if the initial

acceleration phase is over before the first bubble forms. This also explains the exact match of the computational results

by Badr and Dennis (1985), and Chew et al. (1995). The last reference has the correct expression of initial wall vorticity.

In Nair et al. (1998) the wall vorticity is calculated numerically at all times, and this also exhibits an identical numerical

solution and a good match with flow visualization results when the flow is truly two dimensional.

For the solution of Poisson Eqs. (1) and (5), the Modified Strongly Implicit Procedure (MSIP) of Schneider and

Zedan (1981) and the Conjugate Gradient method are used. In general, the equations are discretized at the cell nodes,

while the pressure equation is discretized at the cell centres for the boundary points. The time discretization for Eq. (2)

is by an explicit Euler scheme.

3. Results and discussion

The results reported in Tokumaru and Dimotakis (1993) are for Re ¼ 3800; while Werle (1984) reported observations
for Re ¼ 3300: The results reported here are for Re ¼ 3800 and 1000, for different rotation rates. A fine grid with 450

points in the radial direction and 271 points in the azimuthal direction is used. The first azimuthal line is 0.0005D away

from the cylinder, and the outer boundary is located 24 diameters from the cylinder. A nondimensional time step of

0.0001 was used for numerically advancing the solution. The schematic and notations are shown in Fig. 1. The present

grid is finer compared to the (128	 120) grid used by Chen et al. (1993), Badr and Dennis (1985) and Badr et al. (1990);
all these studies used the stream-function-vorticity formulation. Badr and Dennis (1985) and Badr et al. (1990) took a

value of Dz of 0.05 in the initial stages and 0.1 beyond t ¼ 1:5; where z is the radial distance nondimensionalized by the

viscous length scale (usually defined for unsteady boundary layer flows). Because they used a fixed maximum value of z;
the radial spacing became coarser with time as the boundary layer thickened with time.

Although most of the computations reported for the rotating cylinder cases use impulsively started condition, the

corresponding laboratory experiments reveal conditions that are not strictly impulsive. For example, for the

experimental set-up described in Coutanceau and Menard (1985), it is easy to see that the start-up time (maximum) to

establish the final free-stream speed is 1/8th of the convection time scale. In Nair et al. (1998), a detailed discussion on

this aspect is given, where it is stated that for computing the cases reported in Coutanceau and Menard (1985), one can

take the start-up as impulsive without incurring any error. Here we investigate the role of start-up processes for the

Magnus–Robins effect. The streamlines plotted in this paper are in a translating frame of reference, as in experiments.

In Fig. 2, streamline contours are shown for Re ¼ 1000 and O ¼ 3:0 to show a typical result along with the

corresponding flow visualization picture from Coutanceau and Menard (1985). The detailed comparison with
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experimental results are given in Nair et al. (1998) for other Reynolds numbers and rotation rates. The accuracy and

stability of the numerical schemes used has been addressed in Nair and Sengupta (1997) and Sengupta and Nair (1999)

in greater detail for the upwind scheme used here.

Here Fig. 2 is shown for a special feature of the experiment of Coutanceau and Menard (1985). There is a general

resemblance of the computed field with the experimental visualization. However, there are differences in the shape of

the streamlines upstream of the detached vortex. Similar differences have also been reported by other authors (see e.g.

Badr et al., 1990), and such differences were more pronounced at later times. Polidori et al. (1993) have published

results using the same experimental facility for a stationary cylinder for Re ¼ 1000: Fig. 3 of their paper reveals the
creation of vortices at the junction of the model and the tunnel wall. These structures move towards the centre-line with

the passage of time, rendering the flow three dimensional. A visualization picture taken from one side of tunnel records

streamlines at multiple spanwise stations, giving the appearance of the experimental picture shown in Fig. 2. This is the

reason that all two-dimensional calculations show very good agreement of the detached vortex, but none show a good

match of flow at the shoulder of the cylinder.
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Fig. 2. Computed and experimental instantaneous streamline contours at t ¼ 3 for Re ¼ 1000 and O ¼ 3: The experimental result is
from Coutanceau and Menard (1985).

Fig. 3. Lift, drag and pitching moment coefficients for Re ¼ 3800 and O ¼ 0:5(top) and 1.0 (bottom), as a functions of time.
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3.1. The cases for Re=3800 and O ¼ 0:5 and 1.0

Some preliminary results were given in Nair et al. (1998) for the case of O ¼ 2 and Re ¼ 3800: In Fig. 3 the loads for
the two cases of O ¼ 0:5 and 1.0 are shown for early times only. It should be mentioned that the issues of grid
dependence and numerical instabilities associated with the higher-order finite difference method are resolved and

reported in Nair et al. (1998). In the same way, it has been ensured that the results presented are grid independent and

the time integration proceeded without numerical instability for long times. For lower rotation cases one notices the

formation of an alleyway on the top-side that pushes the vortices towards the bottom half. Perry et al. (1982) have

coined the term alleyway in explaining the near-wake behaviour by examining instantaneous streamlines. An alleyway

refers to meandering of the streamline(s) in the near-wake to the opposite half of the flow after encircling vortices in the

wake. The presence of an alleyway implies that the flow has turned sharply near the body and that is the reason for the

lift direction reversal at irregular intervals.

For the case of O ¼ 1 the alleyways are formed predominantly on the bottom half. The results for the O ¼ 2 case,

for which inviscid theory predicts that the front and rear stagnation points will be coincident, was discussed in

Nair et al. (1998). The following discussion is based on the results of the same reference. According to inviscid flow

theory the lift would not change once the closed streamline is formed. However, this is an unsteady viscous flow,

where vorticity is continually generated at the wall, and even after the formation of the closed streamline, the

wall vorticity keeps changing and hence circulation also changes continually. Beyond t ¼ 5 the closed streamline opens

up and at t ¼ 5:5 and beyond one can notice a tongue-shaped alleyway forming on the windward side of the cylinder.

In contrast, the alleyways for the lower rotation cases are always on the leeward side. Prandtl (1926) suggested that,

as rotation rate increases, the front and rear stagnation points approach each other and, once they merge for O ¼ 2;
no further increase in lift is possible, since the flow inside and outside are insulated from each other. Such an

argument has also been repeated by Tokumaru and Dimotakis (1993), who have furthermore added that such

insulation can be violated only if the ‘‘outside flow’’ can receive vorticity from ‘‘inside flow’’ through spanwise

migration of information. It is in this way that the lift coefficient can exceed the theoretical maximum lift coefficient

value of 4p: However, such an argument cannot explain why and how the closed streamline can increase in size and also
change its shape for rotation rates higher than O ¼ 2: We will come back to this discussion again, while talking about
the results for the higher rotation rate of O ¼ 5:However, looking at the instantaneous streamlines and the lift value for
O ¼ 2 case, one can observe a direct correlation between the size of the recirculating bubble and the lift experienced by

the cylinder. Qualitatively, the presence of a closed streamline for viscous flow can be related to an equivalent inviscid

flow past a cylinder of increased size. This effective size is determined by the stability of the closed streamline shape

and is a direct function of the rotation rate. Higher rotation rates allow formation of a larger equivalent size of

the closed streamline during the transient state. These results clearly demonstrate the role of unsteadiness for this

flow configuration, with its attendant cycle of closed streamline formation followed by alleyway formation, in the

windward side.

3.2. The case for Re ¼3800; O ¼ 5

This case of higher rotation rate is studied as it enables one to follow the unsteady load development. For example

the experimental results due to Tokumaru and Dimotakis (1993) exhibit an increase of the time-averaged lift as the

rotation rate increases. At the same time, Chew et al. (1995) have reported computed results for Re ¼ 1000; where the
lift coefficient levels-off with increasing rotation rate (see their Fig. 26).

First of all, the cases of two different start-ups are investigated. The first start-up is the usual impulsive start of the

flow and for the second case the free-stream speed increases with a smooth acceleration, as given by Eq. (9). The loads

are shown up to a nondimensional time of t ¼ 30 in Fig. 4 for these two start-ups. The two different start-ups yield the

same load levels and the same sequence of instabilities. What is rather revealing in Fig. 4 is that the lift drops by about

50% after t ¼ 27:90 over a very small time, while the drag increases during the corresponding period. The abruptness of
these changes can be well appreciated if we note that for a cylinder of 1 cm diameter placed in a free stream of 10m/s the

convection time scale is 1ms. This is also the scale we have used to nondimensionalize the vorticity transport equation.

Hence, the abrupt fall in the lift occurs over a small time interval of less than 2ms, as indicated in our computations.

In Fig. 5 the variation of cl and cd is shown for a long time interval. It is to be noted that the long time average of lift

coefficient depicted in Fig. 5 matches with the experimentally measured value of lift by Tokumaru and Dimotakis

(1993). Also the displayed lift and drag curves show repeated instabilities referred to in Werle (1984). The loss of lift

starts after t ¼ 27:67 and continues to fall till t ¼ 30:0 and a similar sequence of events occur after t ¼ 56 and at t ¼ 85:
The lift at t ¼ 29:9 has fallen by 46.1% from the peak value of lift attained before the fall. The drop of lift, during

subsequent instabilities, is smaller as compared to that during the first instability. This is perhaps due to the dynamical
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system adjusting itself in terms of a stable vorticity distribution in the flow field. Thus, the first instability is studied in

the following.

For the impulsive start case, some representative instantaneous streamline and vorticity contours are shown in Fig. 6

at some representative times during and after the first instability. In these figures the flow is from the right to the left.

Generally, for subcritical rotation rates, the front and rear stagnation points move towards the bottom while remaining

on the cylinder surface, if the rotation rate is increased. These stagnation points are also called the half-saddle points.

These half-saddle points are asymmetric with respect to the vertical axis due to the drag experienced by the cylinder.

With an increase of rotation rate to the critical value, the half-saddle points merge with each other at the bottom of the

cylinder, on its surface. Any further increase in rotation rate causes the merged half-saddle point to move inside the flow

domain, forming what is called the full-saddle point. The present case corresponds to a super-critical rotation rate, and

hence one can see closed streamlines around the cylinder enclosed by the streamline contour that contains the full saddle

point.
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Fig. 4. Lift and drag coefficients for Re ¼ 3800 and O ¼ 5 as a function of time for an impulsive and an accelerated start for the

oncoming flow, given by Eq. (9).

Fig. 5. Long-time variation of lift and drag coefficients for Re ¼ 3800 and O ¼ 5 for impulsive start.
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Vorticity is continually generated at the no-slip wall that is convected and diffused, as governed by the Navier–Stokes

equation. Initially, the lift increases because the circulation generation is more than its diffusion and convection.

Accumulating vorticity in the neighbourhood of the wall becomes unstable, resulting in expulsion of vorticity from the

recirculating pool of fluid next to the cylinder surface. In the present context, small disturbances are due to various

numerical sources. This instability is manifested by detachment of vortices from the rotating pool of fluid. The signature

of this event is in the vorticity contour plots shown in Fig. 6, as can be seen clearly from the contour plots at t ¼ 31:4: In
the following section, we describe a new instability mechanism derived from the Navier–Stokes equation that explains

the instability induced sudden changes in load.
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Fig. 6. Instantaneous streamline-contours (top) and vorticity-contours (bottom) at indicated times for the Re ¼ 3800 and O ¼ 5 case.
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3.3. A new mechanism of instability

While talking about instability in general, Landahl and Mollo-Christensen (1992) noted that molecular viscosity can

be destabilizing and stated that it is possible to understand such behaviour by studying the redistribution of the total

mechanical energy of the flow [not just how the ‘‘energy of the perturbation’’ given by the square of the fluctuating velocity

changes locally with time].

For incompressible flow the total pressure, pt; is a true descriptor of the total mechanical energy (as described

above) of the flow. It is straight-forward to rewrite the Poisson Eq. (5) for total pressure into the following
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Fig. 7. Contours of the right-hand side of Eq. (12) at indicated times during the first instability. This corresponds to the case of Fig. 5.
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form:

r2 pt

r

� �
¼ jo2j þ V � r2V: ð10Þ

If we furthermore decompose the total pressure in terms of primary and disturbance components by

pt

r
¼

pm

r
þ

pd

r
ð11Þ

then the governing equation for the disturbance flow can be written down as

r2pd ¼ 2om � od þ Vm � r2Vd þ Vd � r2Vm: ð12Þ

In Eqs. (11) and (12) the subscripts m and d signify the primary and disturbance fields. Eq. (12) represents the efflux

of disturbance energy across the surface of an infinitesimal control volume, constructed around the point in question. If

the right-hand side of Eq. (12) is negative, then the disturbance energy at that instant of time increases and hence would

correspond to an unstable situation. In Eq. (12) the right-hand side terms are thus either the source or sink of

disturbance energy. Having a source is equivalent to an instability, while a sink would imply subsidence of disturbance

energy. Since this is based on the instantaneous flow field, the perceived instability would be a temporal one. There are

certain features of this instability, whenever it is present, that would be discussed. Firstly, this does not depend whether

the primary flow is two or three dimensional. This has a very special significance then for the problem at hand. Such

instability when it exists can provide a limiting mechanism for the monotonically growing circulation and it may not be

due to specific three dimensionality, as conjectured by Tokumaru and Dimotakis (1993). Secondly such an instability is

determined by the kinematics of the flow field only. The first term on the right-hand side of Eq. (12) is due to the

interaction of the vorticity distribution of the primary and disturbance field. The second and third terms on the right-

hand side of Eq. (12) arise due to interaction of the velocity field with the curl of the vorticity field. These last two terms

Vm � r2Vd þ Vd � r2Vm would be referred to as T2 for further discussion.

In the following, the instability associated with Magnus–Robins effect that was shown in Fig. 5, is explored. It is

apparent that as time progresses after the impulsive start, the created vorticity increases the lift and it tends to an

equilibrium state where the creation of circulation is balanced by physical dissipation. Such an equilibrium is achieved

at t ¼ 27:67 in Fig. 5. However, this equilibrium is unstable with respect to infinitesimal disturbances, causing the lift to

fall rapidly. Subsequently, the lift increases again till it reaches a second equilibrium state. In the context of the present

computations, various sources of numerical errors promote disturbance energy growth, as they are present all the time.

When the equilibrium state is unstable, one sees the growth of any background disturbances present. The use of a

correct numerical method that is neutrally stable with respect to numerical errors is therefore mandatory to capture the

instability. The numerical solutions obtained are processed to estimate the right-hand side of Eq. (12). It is seen that the

vorticity interaction term (the first term on the right-hand side) is not important. It is the term T2 that contributes to the

instability. To identify the presence of physical instabilities, in Fig. 7 the negative T2 contours are shown. From the

plotted figures it is evident that flow is unstable in the recirculating pool of fluid next to the cylinder surface at all time.

However, it is not convected outside the recirculating pool till the time when T2 becomes strongly negative. And then

the velocity field convects this unstable pool of fluid out of the recirculating zone in the direction of the local velocity

field. While the convection process proceeds, the recirculating region also enlarges in size, as can be seen in the

streamline plots of Fig. 6 and the T2 contours.

The relative role of om � od vis-"a-vis T2 can be seen from Fig. 8 where the minimum of the full right-hand side and T2
are shown as a function of time. It is worthwhile to note that the lift minimum of Fig. 5 is exactly at the same time

instant of the minimum of the curves drawn in Fig. 8.

The above instability was seen to occur for large supercritical rotation rates. That this is also possible at other

Reynolds numbers is explored next. In Fig. 9, cl and cd variations with time are shown for the case of Re ¼ 1000 and

O ¼ 5: This was the case for which some computational results were shown in Chew et al. (1995). For this case also, one
can see the instability sequences. Before t ¼ 270; each of the instabilities is followed by a period where lift and drag
values reach constant levels. The constant drag values are almost zero, implying that the corresponding flow patterns

are like the inviscid flow field. The period over which such flow patterns exist keeps diminishing at times beyond t ¼ 300

and the flow is continuously unsteady.

To understand the implication of such continued unsteadiness, the Fast Fourier Transform (FFT) of the lift data of

Figs. 5 and 9 are shown in Fig. 10. Both data sets represent multi-periodic response. For the Re ¼ 1000 and O ¼ 5 case,

the peaks are the fundamental and its superharmonics. From the FFT of the time signal, the fundamental frequency is

the first peak shown in the figure and is readily read-off as F ¼ 0:05612. In Fig. 10, all the prominent peaks have been

identified that are the superharmonics of this fundamental. For the Re ¼ 3800 and O ¼ 5 case, one sees additionally the
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presence of sub-harmonics. Also in the latter case, most of the energy is confined at zero frequency, although the

frequency bandwidth is much larger for the high Reynolds number case.

4. Concluding remarks

In this research, the flow past a spinning and translating cylinder is studied with the idea of exploring the lift

generation and limiting mechanism via unsteady flow development. The computed results clearly display temporal

instability at irregular intervals—which was reported by Werle (1984) experimentally. We have identified the cause of

this temporal instability as due to an interaction between the velocity field and the curl of the vorticity field of the

primary and disturbance flow fields. Such instability can be present for two-dimensional flows and hence the limiting

ARTICLE IN PRESS

Fig. 8. Minimum value of the right-hand side of Eq. (12) plotted for the disturbance energy. Shown are the total right-hand side and

the T2 term.

Fig. 9. Lift and drag coefficient variation with time for Re ¼ 1000 and O ¼ 5 for impulsive start case.

Fig. 10. FFT of cl and cd data shown in Figs. 5 and 9.
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mechanism is not necessarily by spanwise connection of the recirculating flow with the flow outside this zone. During

such interactions the flow that recirculates near the cylinder shows efficient energy transport from the primary to the

disturbance flow field. For a Reynolds number of 3800, the successive instabilities level off the total lift experienced by

the rotating cylinder that matches excellently with measurements reported by Tokumaru and Dimotakis (1993).

The reported study of an instability mechanism for flow past a rotating cylinder reveals the limiting maximum lift

generation via shedding of vortex puffs at discrete times. It would be interesting to view the general vortex-shedding

phenomenon also as an instability of the same kind. This instability mechanism is more generic, as it originates from

Navier–Stokes equation without any simplifying assumptions on the flow. It would not be straightforward to identify

the primary and disturbance flows in a general case; however, the present study can be viewed as a prototype flow

system exhibiting the features and causes of vortex shedding.
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